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LETTER TO THE EDITOR 
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Abstract. An exact solution is obtained for the diffusion in the symmetric bistable 
W-shaped potential, by using the Laplace transform method. The results thus ob- 
tained are used to elucidate the status of the Kramers theory, usually formulated in 
the limit of large barrier height, as well as to find corrections to the Kramers approx- 
imation, and their relation to the pattern of singularities in the complex plane of the 
Laplaoe-transformed time variable. The probability mass within a given attraction 
basin is studied in detail. It is found to satisfy a non-Markovian dynamics in the 
general case, which reduces to a simple rate equation in the Kramers regime. 

Fluctuation induced transitions between simultaneously stable states across a barrier 
are of great importance in a variety of fields such as chemical kinetics [1,2], electri- 
cal circuits [3], condensed matter [4,5], laser physics [6], geophysics [7-91. Following 
Kramers’ seminal work [lo] extensive effort has been devoted to  the asymptotic prop- 
erties of a class of Langevin equations and the corresponding Fokker-Planck equations 
describing simple versions of the problem, particularly overdamped motion in poten- 
tial systems [ll-151. The Fokker-Planck equation in this case can be solved exactly 
for the steady state, but not for the time-dependent behaviour. A detailed survey of 
the Kramers’ problem has been published recently [16]. 

General results are available concerning primarily the mechanisms by which the 
diffusing particle, moving for a long time in the basin of attraction of one of the stable 
states associated with potential minima, jumps towards the basin of attraction of 
another stable state. In the simplest setting of a one-variable system with two stable 
states separated by a large barrier AU >> D, D being an effective diffusion coefficient 
(or noise strength), this process is described by an exponential time dependence with 
the characteristic Kramers time [lo-161 r N exp[AU/D], where the prefactors are 
determined by the shape of the potential function at the tip of the barrier and at  the 
initial minimum. 

In addition to  the asymptotic results, the validity of the Kramers approximation 
has also been tested by analytical (in some cases, exact closed form) solutions for 
model potentials [12,17-211. These potentials include double-square-well, double- 
parabolic, and certain other shapes. The standard transformation of the Fokker- 
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Planck equation to the Schrodinger form [22] has been generally used to interpret the 
analytical results thus obtained, in the Kramers regime. Indeed, it appears that the 
Kramers time is related to the inverse of the leading spectral gap of the Fokker-Planck 
operator. Specifically, the W-shaped potential considered in this work was studied in 
the Kramers asymptotic regime within the Schrodinger form approach [19]. 

Another development, initiated by Gardiner [13], focuses on the time evolution 
of the total probability mass, N(t) ,  of a given basinrof attraction. In this view the 
Kramers’ theory is an adiabatic approtimalion, whereby N(t) varies slowly as com- 
pared to the time scales of diffusion within that basin of attraction. One is tempted 
to deduce that the process of jumping between the attractors could be viewed as a 
dichotomous noise of the random telegraph signal type. The question then arises to 
what extent the time variation of Nj(t) for the different basins of attraction (labelled 
by j ) ,  can be approximated by the master equations (rate equations) 

where rm+n are the appropriate Kramers time parameters, and ck Nk(t) = 1. 
In the present work we raise the issue of corrections to the Kramers limiting 

behaviour. This topic has been investigated in the existing literature on the analyti- 
cal solutions of simple one-variable diffusion equations only for parabolic-like poten- 
tials/wells [16,23-251. For ,regular potentials U ( t )  diverging faster than - I t [  at both 
t = +00 and -00, these corrections will be controlled by the next-to-leading spectral 
gaps (provided AU >> D is satisfied). However, for the W-shaped or any other ID 
potential U(z) diverging in at  least one of the limits t +. $00 or -a as I t l a ,  with 
a 5 1, termed ‘soft potentials’ [26], calculation of corrections in the Schrodinger form 
would entail the evaluation of the contribution due to a continuum of eigenslates [26] 
(while the leading Kramers times are associated with the discrete spectrum). 

Our objective here is to derive an exact solution of the diffusion in the W-shaped 
potential. We employ the Laplace transform method which in this case has distinct 
advantages in evaluating the corrections to the Kramers asymptotic limit. Indeed, we 
find that these corrections are obtained by the integration over a branch cut in the 
complex plane (while the Kramers type terms are associated with simple-pole singu- 
larities), which is a more transparent mechanism than summation over the continuous 
spectrum in the Schrodinger-form approach. Furthermore, the corrections become 
comparable to the Kramers contributions when the effective diffusion coefficient is of 
the order of the barrier height. 

Our basic equation is the standard Fokker-Planck equation for the probability 
density P ( z , t )  in the iD diffusion, 

The potential U(z) is W-shaped, and we consider the symmetric case where all the 
linear segments have slopes [U’[ = w ,  corresponding to the ‘drift velocities’ fw. Here 
D is the diffusion constant (noise strength), while primes will generally denote differ- 
entiation with respect to t. With these definitions the tip barrier value U ( 0 )  and the 
locations 2 = f a  of the minima of the W-shaped potential are related by 

wa = rD (3) 
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where 
r E U(O)/D.  

Thus, the function U ( z )  is given by U ( z )  = f w z  f D r ,  with the obvious choices 
of signs in the four regions: (-,-) for z < -a; (+,+) for -a < z < 0; (-,+) for 
0 < z < a ;  and (+, -) for z > a.  

The Laplace transform method works for various piecewise linear potentials. How- 
ever, the expressions obtained are extremely cumbersome. This is the r e m n  for select- 
ing the symmetric case. Furthermore, in order to obtain tractable results we will select 
the initial conditions exactly at  the left minimum (z = -a), P ( z ,  t = 0) = S(z + a) .  
Even with these assumptions most of the calculations had to be carried out by using 
the symbolic computer language MACSYMA. 

In terms of the Laplace-transformed function 

F(z,s) = lm e-s'P(z,t)dt (4) 

equation (2) takes the form 

s F  = DF" + (U'F)' + S(z + a). (5) 

In the four regions between the points x = -oo,-a,O,a,+oo, (5) reduces to  the 
differential equations DF" f wF' - s F  = 0 ,  where the sign is given by the slope 
of V(z) in the appropriate region. It is convenient to introduce the function q(s)  
suggested by the appropriate characteristic equations, 

Then the general solutions in the four regimes of interest are given by 

The coefficients A,, B,,,, Cl,,, E, are determined by the conditions of the conti- 
nuity of P ( z , t )  and the probability current, at the special points x = 0 , f a .  The 
continuity of P ( z ,  t )  implies the continuity of F ( z ,  s) and yields three equations. The 
continuity of the current is enforced by integrating (5) over the z ranges -a f 6 ,  0 f E ,  

and a k E ,  with an infinitesimal E .  This yields the remaining three equations for the 
six unknown coefficients. For example, integration near z = -a gives 

where the -a+ expression is calculated by putting z = -a in (9), while the -a- 
expression is calculated by using (10). As already mentioned, the actual calculations 
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were programmed in MACSYMA. Only the results are given here: 

A,  = r(r + 2q)2e2r+3q/~ 

B,  = r2(r + 2 q ) e Q / ~  

These expressions yield a complete solution of the time-dependent problem in the 
Laplace-transformed form. Since the consideration of the t-dependence, obtained by 
the inverse Laplace transform, is in itself non-trivial, we will focus on one quantity: the 
probability mass N + ( t )  that the diffusing particle is found in the basin d attraction 
of the minimum a t  t = a (while the initial conditions were ?: = -a), which is the 
inverse Laplace transform of 

00 ar ( r  + 2q)eq 
2qw(r + q)[r + 2qer+2q]' 

N + ( s )  1 d t F ( z , s )  = 

The inverse Laplace transform of N+(s), with the s-dependence entering via (6), in- 
volves a complex plane integration over a contour s = Re(s)+iu, with fixed Re(s) > 0, 
while U is varied in (-m,+m). As usual, we shift the contour to run counterclock- 
wise around the singularities of N + ( s )  on the relevant Riemann sheet, which all are 
at Re(s) 5 0. The most obvious singularity is the branch point at  

W2 
SB = -- 

4 0  

which suggests that the appropriate Riemann sheet is Re[(w2 + ~ D s ) ' / ~ ]  2 0,  provided 
the branch cut is selected along the negative real axis, at  -co < Re(s) < sB. Another 
obvious singularity is the simple pole at  s = 0, due to the factor q in the denominator 
of (19), the residue of which can be calculated and, as expected, is just N+(m) z f .  

Let us now consider the possible singularities due to other factors in the denom- 
inator. First, the term ( r  + q)  yields a simple pole at  s = 0 on the second Riemann 
sheet, which is of no consequences in our calculations. Secondly, we consider the equa- 
tion r + 2qef+24 = 0. The root corresponding to 2q = -r (coinciding in fact with 
s = sB), is cancelled by the factor ( r  + 2 q )  in the numerator. In addition, however, 
this equation has one real root and an infinite number of complex roots. One can 
establish by graphical analysis of the corresponding equations for Re(q) and Im(q) 
that the complex roots always lie in the second Riemann sheet of the complex-s plane. 
(This is in fact a non-trivial analysis details of which are not given here.) 

The remaining real root sp(r) is on the correct Riemann sheet only for r > 1. For 
large r ,  we have 

n 

(21) 
W' 

sp(r)  E -- 2De-' (r >> 1). 
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The residue of the corresponding pole in N+(s)  is given in this limit by -f + o(e-r). 
However, as r is decreased towards r = 1, the function sp(r) approaches the value sB. 
This function cannot be obtained in closed form. Its general trend for r 3 1 is similar 
to  the approximate expression (21) except that  near r = 1+ the full function has zero 
slope. The corresponding pole in the complex-s plane approaches and enters the tip 
of the branch cut as r -* 1+, and emerges on the second Riemann sheet for 0 < r < 1. 

The above analysis suggests that  for r > 1 we can generally write Nt( t )  - f = 
NP(t)+ N B ( t ) ,  were the notation is self-explanatory. The pole contribution, which has 
the exponential time dependence, dominates for long times when r >> 1, corresponding 
to  U ( 0 )  >> D. In this limit it is given by 

1 w2e-' 
NP(t) = residue(r) exp(-Isp(r)lt) E -- 2 e x p ( - r t ) .  

The contribution due to  the branch cut, obtained by integrating the discontinuity 
along it in a standard fashion, can be evaluated for long times. We only quote the 
result of this lengthy calculation 

W2 
t-312 exp ( - E t )  ( r  # l , t  + CO). (23) 

afie-r12 
J;;w2(r - 1)2 NB e - 

Note that  NB becomes comparable to  Np when r > 1 is of O(1). 
For r 5 1, there is no pole contribution so that formally one can put N p  E 0. The 

branch cut contribution is then the only time dependence present. It turns out that  
the long-time limiting form for r < 1 is still given by (23). However, at r = 1 a special 
behaviour is found 

Finally, we note that  the short-time behaviour of N t ( t )  can be calculated by a 
different approach not detailed here. The leading order result is 

e-r& a 2 D  
Nt(t  + 0) M &aD3I2 '"'(-7) (25) 

illustrating the expected essential singularity a t  t = 0. 
I t  is instructive to compare the explicit expressions with the results available in the 

literature. First, we note that the complex plane pattern of singularities in the Laplace 
transform formulation is reminiscent of the eigenvalue spectrum in the Schrodinger 
form [19]. Indeed, Isp(.)] corresponds to  the gap due to  the discrete excited state, 
while l sB(r ) I  equals the gap value of the edge of the continuous spectrum. 

Next consider the case of large r .  Turning to  eq. (l), we note that in the present 
case, due to  the symmetry of the potential, the two time parameters 7 are equal. By 
using the relation N -  = 1 - Nt , we can reduce the two equations (k) to the form 

-Nt(t) d = -:(Nt(t) - i). dt 

Thus in the symmetric case there is an extra factor of 2 relating the Kramers time 
and the decay rate in, e.g., (22). Our calculations thus suggest r = (4D/w2)er. 
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The original Kramers formulation [lo], when put in our notation, suggests the 
relation 

where AU(z) i U(z)-U(-a) = U ( z )  ; see also [26] for a discussion of relations of this 
kind. The first integral here is over the barrier region and is usually approximated by 
the quadratic expansion near the tip. In our case the barrier is not quadratic. However, 
the potential is simple enough to calculate the exact value, (2Dlw)e' + O(1). The 
second integral is about the minimum at z = -a, and AU-(z) is a single-minimum 
potent ia l  which describes the shape of AU(z) at -a. Again, the usual quadratic 
approximation does not apply here. We take, instead, AU-(z) = WIZ + al. The 
second integral in (27) then yields 2D/w. Collecting the results, we obtain the P value 
consistent with the exact solution and with the Markovian character of the process 
governing the transitions between the two attractors. When on the other hand r is of 
the order of unity, the dynamics is non-Markovian. 

In summary, this work illustrates by exact calculations for the W-shaped potential 
how the Kramers regime emerges as the leading order in some approximate limit, and 
how the corrections to this result can be associated with the complex plane singularities 
in the Laplace transform formulation-which is particularly useful in cases when the 
Schrodinger formulation involves a continuous eigenspectrum-and can even dominate 
the long-time behaviour in certain conditions. 

This work was supported in part by the NSF (grant DMR-8515519), by the San Paolo 
Foundation, Torino, and by the Action de Recherches Concert& programme of the 
French Community of Belgium. 
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